Väärät metodit

10% ALENNUS KOODILLA PAKKOTOISTO
Keskushermostohan kuormittuu enemmän pitkistä kestävyystreeneistä kuin voimatreeneistä. Kevennys kuitenkin palvelee sitä palautumista aika monella tasolla ja mulla ei oo mukana yhtäkään, joka ei ohjelmoidusti keventelisi. Suurin osa pitkän linjan voimailijoista on kokenut tuon toiseksi parhaaksi yksittäiseksi tekijäksi kehitykselle. Paras on se varan jättäminen sarjoihin. Yleisin rytmi mulla on 3 nousujohteista, 1 kevyt viikko/kierto. Seuraavaksi sitten aika monilla käytössä kova, keskikova, kova, kevyt.

Testit mä ohjelmoin useimmiten kevyen jälkeen heti tai ns. kakkosviikolle. Monesti myös ns. kevyelle viikolle, jolloin se muu kuorma on vähäsempää. Joka tapauksessa käytännössä aina edellinen treeni on hieman kevyempi, jos ens viikolla on testi. Jos testaillaan vasta kovan jakson lopussa ilman mitään keventämistä, ei saada niin hyviä testejä aikaan.
Oliko meillä tästä hermoston kuormittumisesta mitään tutkimus dataa. Olen siis kanssasi täysin samaa mieltä omakohtaisten kokemusten kautta kun myös sivusta seuranneena. Ja kaikki vuodet on mennyt ihmetellessä mikä on kun tän pitäis olla kevyttä mutta oon totaalisen rikki. Sitten totesin että no ihan sama mitä muut on mieltä että mulle ei ainkaan siinä kontekstissa toimi että volyymia selkeästi alas ja kuormaa ylös ja jo lähti palautuminen paranemaan heijastui sitä kautta sitten kaikkiin elämänalueisiin. 👍🏼
 
Hyvä, kun sait homman itelles pelaamaan. Onhan noista olemassa dataa ja en juuri muuhun sanomisiani perusta. En kuitenkaan kerää mitään tarkkoja nimikoituja arkistoja valitettavasti eri aihealueista, joten ei nyt ole heittää viitettä. Ainakin Chris Beardsleyn infografeja kannattaa seurailla ja käydä läpi ainakin. Niissä on tuostakin aiheesta ollut näppäriä koosteita.
 
To investigate the effect of protein supplementation alone or combined with light-intensity or heavy-load resistance exercise on muscle size, strength, and function in older adults.



In a 1-y randomized controlled trial, 208 healthy older adults (>65 y) were randomly assigned to 1 of 5 interventions:

1) carbohydrate supplementation (CARB);

2) collagen protein supplementation (COLL);

3) whey protein supplementation (WHEY);

4) light-intensity resistance training 3–5 times/wk with whey protein supplementation (LITW);

5) heavy resistance training 3 times weekly with whey protein supplementation (HRTW).



Protein supplements contained 20 g protein + 10 g carbohydrate, whereas CARB contained 30 g of carbohydrates. All intervention groups received the supplement twice daily



Recommending protein supplementation as a stand-alone intervention for healthy older individuals seems ineffective in improving muscle mass and strength. Only HRTW was effective in both preserving muscle mass and increasing strength. Thus, we recommend that future studies investigate strategies to increase long-term compliance to heavy resistance exercise in healthy older adults.

 
To investigate the effect of protein supplementation alone or combined with light-intensity or heavy-load resistance exercise on muscle size, strength, and function in older adults.



In a 1-y randomized controlled trial, 208 healthy older adults (>65 y) were randomly assigned to 1 of 5 interventions:

1) carbohydrate supplementation (CARB);

2) collagen protein supplementation (COLL);

3) whey protein supplementation (WHEY);

4) light-intensity resistance training 3–5 times/wk with whey protein supplementation (LITW);

5) heavy resistance training 3 times weekly with whey protein supplementation (HRTW).



Protein supplements contained 20 g protein + 10 g carbohydrate, whereas CARB contained 30 g of carbohydrates. All intervention groups received the supplement twice daily



Recommending protein supplementation as a stand-alone intervention for healthy older individuals seems ineffective in improving muscle mass and strength. Only HRTW was effective in both preserving muscle mass and increasing strength. Thus, we recommend that future studies investigate strategies to increase long-term compliance to heavy resistance exercise in healthy older adults.

Olisivat nyt vielä tutkineet kovan treenin vaikutuksen yksinään vs. kova treeni ravintolisillä, niin tutkimuksen tuloksella voisi olla jotain arvoakin.
 
The effects of different doses of caffeine on maximal strength and strength‐endurance in women habituated to caffeine Aleksandra Filip-Stachnik1, Michal Wilk1*, Michal Krzysztofik1, Ewelina Lulińska2, James J. Tufano3, Adam Zajac1, Petr Stastny3 and Juan Del Coso4

Abstract Purpose: The main goal of this study was to assess the acute effects of 3 and 6 mg of caffeine intake per kg of body mass (b.m.) on maximal strength and strength-endurance in women habituated to caffeine.

Methods: Twenty-one healthy resistance-trained female students (23.0 ± 0.9 years, body mass: 59.0 ± 6.6 kg), with a daily caffeine intake of 5.8 ± 2.6 mg/kg/b.m. participated in a randomized, crossover, double-blind design. Each participant performed three experimental sessions after ingesting either a placebo (PLAC) or 3 mg/kg/b.m. (CAF-3) and 6 mg/kg/b.m. (CAF-6) of caffeine. In each experimental session, the participants underwent a 1RM test and a strength-endurance test at 50 %1RM in the bench press exercise. Maximal load was measured in the 1RM test and the time under tension, number of preformed repetitions, power output and bar velocity were registered in the strength-endurance test.

Results: The one-way ANOVA showed a main effect of caffeine on 1RM bench press performance (F = 14.74; p < 0.01). In comparison to the PLAC (40.48 ± 9.21 kg), CAF-3 (41.68 ± 8.98 kg; p = 0.01) and CAF-6 (42.98 ± 8.79 kg; p < 0.01) increased 1RM bench press test results. There was also a significant increase in 1RM for CAF-6 when compared to CAF-3 (p < 0.01). There was a main effect of caffeine on time under tension during the strength-endurance test (F = 13.09; p < 0.01). In comparison to the PLAC (53.52 ± 11.44 s), CAF-6 (61.76 ± 15.39 s; p < 0.01) significantly increased the time under tension during the maximal strength-endurance test. Conclusion: An acute dose of 3-to-6 mg/kg/b.m. of caffeine improves maximum strength. However, these doses of caffeine had minimal ergogenic effect on strength-endurance performance in women habituated to caffeine.

 
Ootteko koskaan miettiny auttaako krokotiilin veri domsseihin? No, nyt on teille hyviä uutisia;

The definitive
This study aimed to investigate the preventative effects of crocodile blood supplementation on DOMS induced by eccentric exercise. Sixteen healthy males were randomly allocated to either a crocodile blood (CB, n = or a placebo (PL, n = treatment
An 18-day supplementation of 1 g day−1 of CB helps to maintain peak muscle force or DOMS compared to a placebo after eccentric exercise. In addition, biochemical analysis provided evidence that 1 g day−1 of CB supplementation should be safe for human consumption.

The Effects of Crocodile Blood Supplementation on Delayed-Onset Muscle Soreness​



:sneaky::sneaky:
 

Epidemiology

Original research

Fitness, strength and severity of COVID-19: a prospective register study of 1 559 187 Swedish conscripts


Abstract​

Objective To investigate the possible connection between cardiorespiratory fitness (CRF) and muscle strength in early adulthood and severity of COVID-19 later in life.
Design Prospective registry-based cohort study.
Participants 1 559 187 Swedish men, undergoing military conscription between 1968 and 2005 at a mean age of 18.3 (SD 0.73) years.
Main outcome measures Hospitalisation, intensive care or death due to COVID-19 from March to September 2020, in relation to CRF and muscle strength.
Results High CRF in late adolescence and early adulthood had a protective association with severe COVID-19 later in life with OR (95% CI) 0.76 (0.67 to 0.85) for hospitalisation (n=2 006), 0.61 (0.48 to 0.78) for intensive care (n=445) and 0.56 (0.37 to 0.85) for mortality (n=149), compared with the lowest category of CRF. The association remains unchanged when controlled for body mass index (BMI), blood pressure, chronic diseases and parental education level at baseline, and incident cardiovascular disease before 2020. Moreover, lower muscle strength in late adolescence showed a linear association with a higher risk of all three outcomes when controlled for BMI and height.
Conclusions Physical fitness at a young age is associated with severity of COVID-19 many years later. This underscores the necessity to increase the general physical fitness of the population to offer protection against future viral pandemics.



http://dx.doi.org/10.1136/bmjopen-2021-051316

Strengths and limitations of this study​

  • Data from the Swedish military service conscription registry provided us with objective measures of fitness in a uniquely large sample.
  • The prospective design with long and near-complete follow-up from well-validated hospital records and the death registry gives a strong ground for drawing conclusions.
  • Limitations include thatit was not possible to distinguish conscripts with low versus extremely low fitness levels.
  • Since female conscription was voluntary, our results can only be generalized to men.

Background​

The COVID-19 pandemic has affected the world in unprecedented ways. While measures such as contact restrictions and vaccinations relieve the immediate impact of the disease, epidemiological studies may identify risk factors that could be managed in the long run, in order to reduce the impact of future epidemics. Early on, advanced age and current cardiovascular comorbidities including obesity were found to be associated with a more severe course of COVID-19.1–3
Cardiorespiratory fitness (CRF) is regarded as one of the most important risk factors for overall health, cardiovascular morbidity and overall mortality.4 The level of physical activity early in life (and associated CRF) may have short-term and long-term effects on risk factors and the immune system. There has been speculation about the way it may confer protection against severe COVID-19.5 An early observation from the UK Biobank cohort that slower self-reported walking pace predicted more severe COVID-19 suggests the importance of CRF for this particular disease,6 and more recent studies have reinforced this notion, using self-reported measures7 8 but also clinically tested CRF and strength.9 10
Although CRF is a persistent trait with a genetic component,11 it is also to a large extent modifiable by regular exercise. Overall, physical fitness consists of CRF and muscular fitness, including muscle strength and healthy weight. Body mass index (BMI) is routinely measured in hospital and public care settings and has already been shown to be associated with severity of disease.2 12 However, objective measures of CRF and strength before the onset of COVID-19 are rarely available in population-based studies. Self-reported measures are unreliable, and most studies conducted in middle-aged or older populations have limited information on risk factors in earlier life.13 Participation rates among young men in population-based studies also tend to be low.14
Swedish military service conscription registry contains detailed and high-quality information about CRF and strength in a uniquely large sample of young men. In contrast to many population-based surveys, the participation rates until the early 2000s suggested highly generalisable results. Combined with measured data on BMI and other potential confounding factors in early adulthood, linkage data from nationwide disease registries enable a life course perspective on the role of physical fitness as a potentially mitigating factor for severe COVID-19 that is presently lacking in the literature.

Methods​

Study design​

This prospective cohort study is based on data from the Swedish military service conscription registry, the Longitudinal integration database for health insurance and labour market studies (LISA), and the Swedish national hospital, intensive care and cause of death registries (for description in detail, see Åberg et al).15 Fitness data were collected in early adulthood, in relation to incidence data on COVID-19 retrieved in September 2020, after the first wave of the pandemic in Sweden.

Population studied​

The Swedish military service conscription registry contains information about 1 949 891 Swedish individuals who enlisted for military service between late 1968 and 2005 giving between 15 and 52 years of follow-up until the outbreak of COVID-19. During that time, Swedish law required all male citizens to enlist, except for those in prison or those with severe chronic somatic or psychiatric conditions or functional disabilities (approximately 2%–3% annually). Due to a shift to voluntary recruitment in 2005, the data in later years is no longer considered representative. The standardised protocol included measurements of weight and height, blood pressure, muscular strength and CRF. The registry also includes prior medical diagnoses. The examinations took place over 2 days in six conscription centres across Sweden.

Main independent variables​

CRF score​

To evaluate CRF, the subjects performed a cycle ergometric test where the work rate was successively increased until limited by exhaustion. Based on the final work rate, a nine-level score derived by the National Service Administration in Sweden16 served as a standardised measure of CRF. These scores were validated in relation to different tasks the conscripts were expected to manage during their time in the military (cross-country running with a heavy backpack and heavy lifting).16 Over the decades, there have been some changes in the conscription examination protocols, and raw data were not available for all conscripts.17 However, the CRF scores matching certain military requirements were assigned during all recruitment years and can be assumed to be comparable across years.11 For this study, the scores were collapsed into three categories describing low,1–5 medium6 7 and high8 9 CRF. The asymmetrical assignment of CRF scores was prompted by the fact that the fitness data in the lowest categories were omitted from the registry after 1999.15

Muscle strength score​

Isometric muscle strength in units of newton was assessed as a weighted sum of knee extension (weight 1.3), elbow flexion (weight 0.8) and handgrip (weight 1.7). As the methods for measuring muscle strength did not change over the years and both the weighted values and assigned strength scores were available in the registry until 1996, it was possible to examine strength as a continuous variable.16

Other covariates​

BMI, height and weight status​

Weight and height were measured by standard anthropometric measurement techniques, and continuous BMI values (kg/m2) were calculated and also divided into categories of underweight (BMI<18.5), normal weight (BMI 18.5–24.9), overweight (BMI 25.0–29.9), obesity (BMI 30–34.9) and obesity class 2 (BMI≥35).18 For those aged 15–17 years at conscription, weight status categories were adjusted based on age-specific and sex-specific BMI z-scores, according to the WHO recommended childhood BMI cutoffs.19 In addition, height was included as a covariate, given its positive association with muscular strength.

Blood pressure​

High blood pressure in early adulthood was used as an indicator of predisposition to later hypertension and other cardiovascular diseases (CVDs).6 Systolic and diastolic blood pressure was measured according to a standardised protocol after 5–10 min of rest in the supine position. In this study, values were then categorised into five subgroups (optimal blood pressure (systolic blood pressure <120 mm Hg and diastolic blood pressure <80 mm Hg), normal blood pressure (120–129 and 80–84 mm Hg), high normal blood pressure (130–139 and 85–89 mm Hg), grade 1 hypertension (140–159 and 90–99 mm Hg) and grade 2 hypertension (≥160 and ≥100 mm Hg) based on the 2018 European guidelines.20

Chronic disease at baseline​

To assess the specific effect of physical fitness, we controlled for morbidity at baseline, using International Classification of Diseases (ICD) codes for respiratory disease (J00-J99), CVD (I00-I99), diabetes (E10-14), kidney disease (N00-N29) and malignant cancers (C00-C97).

Analytic samples and subsamples​

Figure 1 describes the construction of the analytic sample. Among 1 949 891 individuals examined for conscription between 1968 and 2005, the following exclusions were made: those with ambiguous identification numbers or without known place or year of conscription, those dying or emigrating without return before 2020 and all female conscripts, leaving 1 737 217 observations. Because of the aim of relating fitness measured in adolescence and early adulthood to disease severity later in life, individuals with age at conscription outside the interval of 15–30 years were excluded. Since BMI was an important confounder for the association between fitness and disease, the sample was further restricted excluding all men with missing or implausible BMI values (range for inclusion set between 15 and 60). Among the remaining 1 559 187 men, 1 143 670 had values for CRF and 1 161 914 had registered values for the continuous measure of muscle strength.
Construction of analytic sample. BMI, body mass index; CRF, cardiorespiratory fitness.
" data-icon-position="" data-hide-link-title="0" style="-webkit-font-smoothing: antialiased; box-sizing: border-box; background-color: transparent; font-weight: 400; text-decoration: none; color: rgb(42, 110, 187); box-shadow: none; border: none;">Figure 1
  • Construction of analytic sample. BMI, body mass index; CRF, cardiorespiratory fitness.

Outcome parameters: hospitalisation and/or death due to COVID-19​

Using the Swedish personal identification number, the full sample was linked to the national hospital, the intensive care and the cause of death registries. From these, all cases between March and September 2020 with a main diagnosis of ICD U071 for test verified infection with SARS-CoV-2 and U072 for clinically diagnosed COVID-19, or deaths with U071 or U072 as an underlying cause of death were identified.
Records with U071 or U072 as a secondary diagnosis were counted as cases if the main diagnosis was clinically related to COVID-19 (full list in online supplemental table S1). This resulted in a reduction of total cases from 2957 to 2635.

Supplemental material​

[bmjopen-2021-051316supp001.pdf]
All cases were considered as severe COVID-19 since they required hospital care. Furthermore, patients were categorised into three groups with increasing severity:
  • Hospitalisation due to COVID-19: n=2594.
  • Intensive care due to COVID-19: n=559.
  • Deaths due to COVID-19: n=184.
Register data based on Swedish hospital records have high validity.21 As the healthcare system was stressed during 2020 but never overloaded, it is unlikely that a significant number of potential hospital patients with COVID-19 were not admitted or included in the records.

Results​

Basic characteristics of the 1 559 187 men included in the study are shown by conscription decade in table 1. The majority of deaths and hospitalisations due to COVID-19 were observed among those who underwent conscription between 1968 and 1985.

Table 1
Description of analytical sample by conscription decade

CRF in early adulthood and severity of COVID-19​

Our analysis shows a protective association between higher CRF at conscription and hospitalisation, intensive care or death due to COVID-19 later in life, adjusted for examination year and place and conscript’s age at examination. ORs for high versus low fitness were 0.76 (95% CI 0.67 to 0.85), 0.61 (95% CI 0.48 to 0.78) and 0.56 (95% CI 0.37 to 0.85) respectively.

Discussion​

The main finding of this study is that lower CRF and lower muscle strength in young adulthood are predictive of severe illness and death due to COVID-19 15–52 years later. The protective association between cardiovascular fitness and COVID-19 severe enough to warrant hospitalisation, intensive care and/or death was not attenuated by controlling for BMI at the time of conscription examinations. It was also independent of parental education, chronic morbidity and blood pressure at conscription.
As of this date, no other comparable study has been published on the link between fitness in young adulthood and later COVID-19. Using data from the Swedish military conscript registry provided us with objective measures of fitness in a uniquely large sample. This together with the prospective design, the long and near-complete follow-up from well-validated hospital records and the death registry provides a strong ground for drawing conclusions.
Other studies point in the same direction, though with a shorter time span between exposure and outcome. Measured hand grip strength has been shown to correlate with COVID-19 hospitalisations among adults 50 years and older.10 Also being consistently inactive is strongly associated with increased risk of severe COVID-19.7
A possible mechanism for associations between CRF and severe COVID-19 could be higher cardiovascular morbidity (diagnosed or not) in the years after conscription examination among those with low CRF. Earlier studies using the same data have shown an association between low fitness and higher risk of heart failure, diabetes type 2, stroke, hypertension, ischaemic heart disease and psychiatric disorders.15 25–28 In this regard, CRF could also be a marker for a better long-term lifestyle (less smoking, better diet).
Alternatively, there could be a direct anti-inflammatory effect or a modulation of the immune system, either acquired during adolescence and early adulthood and retained during the years leading up to 2020 or continually reinforced by physical activity established earlier in life.29 In a subsample of 139 609 individuals, we had access to more recent CRF data collected from a health profiling registry,30 showing a clear correlation between these estimates of VO2max and the fitness categories from conscription, indicating that physical fitness tracks over time.
However, only a minor part of the protective association between CRF and COVID-19 outcome was mediated by protection from CVD in midlife. This points to a genuine effect of physical fitness acting via a modulation of the immune system. Of course, we cannot rule out a genetic predisposition to lower inflammatory levels, in conjunction with genetically higher CRF.31
Despite a number of strengths, the study is not without limitations, including the fact that a large number of Swedish citizens have immigrated as adults and never went through the conscription examination. Immigrants have been over-represented in the Swedish COVID-19 mortality and morbidity statistics with explanations ranging from crowded living conditions, lack of official information and occupations where working from home is not an option. This group has a lower socioeconomic status and higher degree of lifestyle-related risk factors (more obesity, more smoking and more diabetes). Importantly, this group has also lower CRF, potentially contributing to explaining their higher risk.32
Moreover, the results from this cohort can only be generalised to men, since the conscription process was not mandatory for women. Other limitations include some protocol changes in strength and CRF measurements over the years. For instance, a rather large number of conscripts are lacking CRF scores, predominantly during the last decade where the lowest scores were not recorded. This makes it difficult to draw conclusions regarding very low CRF levels and could underestimate the adverse association. In contrast to the CRF scores, the muscular strength measurements among the conscripts are normally distributed, and the analysis shows a considerable increase in the odds of developing severe COVID-19 among those at the lowest end of the distribution. When CRF was included in the model, the effect of mus, indicating that CRF is the more important factor. Height turned out to be independently predictive of hospitalisation with OR 1.014 (1.006–1.021) per cm (95% CI, basic model adjusted for BMI), with a possible explanation being the association between height and venous thromboembolism.33
A related concern is the current age range of the cohort (32–70 years in 2020). All reported findings were adjusted for exact age at conscription and year of conscription examination and thus indirectly for age in 2020. To further illustrate this point, we repeated the analysis after stratification at median current age (52 years) and found only minor differences between the age groups. This underscores that protective associations of higher fitness are observed independent of cohort differences in current age or length of follow-up.
The present study has clear clinical implications. Physical fitness is a (largely) modifiable exposure and is therefore an important preventive measure both affecting later CVD and, as this study shows, severe COVID-19. The obvious public health implications ought to be to further strengthen efforts concerning fitness in the young and presumably through the life course. Anecdotal stories about severely sick athletes during 2020 (the first patient in intensive care in Italy was a marathon runner) raised the question if extremely physically fit individuals had a higher risk of severe COVID-19 but no statistically significant difference could be seen between those of very high CRF (score 9) and those with moderately-high (score 8), although the power of this analysis was low.
Looking towards the future, there are also the indirect effects of the pandemic and subsequent lockdowns on physical activity behaviours. In Sweden, a country with relatively few restrictions during the pandemic, only small changes in lifestyle habits have been shown so far,34 even though the amount of time sitting down is similar to other study settings.35 36
Considering the fact that women seem to run lower risk for severe COVID-19,37 it is unfortunate not to be able to compare the protective effects of CRF in women and men. Using other sources of data such as the Swedish medical birth register, this might be done in a future study. Finally, although we found the results for CRF were generally robust and unaffected by adjusting for covariates such as BMI, we cannot exclude the possibility of residual confounding by unmeasured factors. This includes later exposures and comorbidities occurring between conscription and 2020.

Conclusion​

There is growing evidence of the importance of CRF on morbidity later in life,30 whereas this study shows fitness at a young age may influence the severity level of COVID-19 many years later. In the near future, updates of the COVID-19 data will make it possible to understand these effects in more detail but are unlikely to reverse the results.
The findings of the present study reinforce the need to promote regular physical activity early in life to increase the general CRF and muscular strength of the population to decrease the risk of future cardiovascular events and other conditions and to offer protection against potential consequences of future viral pandemics.
 
Viimeksi muokattu:
EI ole ylitreenaamista vaan alisyömistä- rupee pitää paikkaansa tutkimustenkin osalta. JOs joku haluaa, mulla on tuo koko paperikin.

 
Failure treenaamiseen liittyen, onko muilla ollut havaintoja, että sarjapainojen kasvaessa treeniuran aikana palautumiskapasiteetti ei pysy enää mukana?

Itse keksin parikymppisenä 1 sarja failure treenaamisen perintesen korkeamman volyymin tilalle ja kehitys silloin räjähti seuraavan vuoden aikana.
Kyykky jostain 4x140kg -> 5x170kg vuodessa. Silloin olin naturaali ja usein sai tuon vuoden aikana jopa 2 kertaa viikkoon tehtyä failure kyykky sarjan rikkoen ennätystä. Edelleenkin alle 30v olen.

Sitten tuli lääkkeet avuksi ja tuo treeni systeemihän toimi edelleen. Kohta oltiin 5x200kg kyykkyssä. Tässä kohtaa olin huomannut, ettei pysty kuin max kerta viikkoon tuollaisen kyykyn tekemään. Eikä lääkkeistä huolimatta puhettakaan että 2x viikossa.

Sittemmin kun ollaan tuolta vielä kehitytty, niin ei edes korkeilla kaloreilla ja lääkkeillä pysty palautumaan tuommoisesta kuin kerran 10-14 päivään. Tuommoisen treenityylin yrittämisessä ei ole siis mielestäni järkeä enää ja jäänytkin pois. Muuten varmaan toimisi jos palautuisi järkevämmässä ajassa. Tehty muita treeni tyylejä välissä ja kokeiltu uudelleenkin mutta aina sama homma.


Jotenkin vain oudon tuntuista, että sillon natuna pystyi vetämään sunnuntaina ennätys sarjan 5x160kg, mikä oli sen aikainen totaali failure ja sitten torstaina parantamaan 6x160kg. Nyt lääkkeiden kanssa 10x200kg niin tietää kokemuksesta, että turha edes yrittää seuraavaan kahteen viikkoon parantaa ja muutenkin ennätyksen jälkeen fiksumpi lähteä hakemaan vauhtia vähän alempaa kuin että yrittäisi heti parantaa.
 
@kysyvaan :
Olematta mikään expertti niin omat kokemukset samansuuntaisia.
Joskus tuntuu että kunto/voimat ei edes kasva vaan itsestään saa vain enemmän irti ja palautuminen on siksi hitaampaa?
Käsittääkseni lääkitys nimenomaan auttaisi palautumiseen? Onhan se tietty sulla auttanutkin kun tehot kuitenkin nousivat vielä reilusti natuenkkojen jälkeen.
Menee tosiaan maku jos kunnon kyykky/mave treenin saa tehtyä kerran kahteen viikkoon.
Neuvona olisi just ollu korkeamman volyymin kokeilu joko viikottaisen treenin sisällä tai treenikierron sisällä... Mutta senhän sä olet jo kokeillu.
Tsemppiä 👍
 
Ei sille failurelle ole voimatreeneissä oikein perustetta. Liian samankaltaistahan sekin kropalle on ja pahimmillaanhan se voi alkaa laskeen kropan "rajoittimia". Senkin takia se kehitys voi hyvinkin alkaa lagailemaan, vaikka joskus on toiminut. Koskee ihan kyllä kaikkea samanlaista touhua. Ei mikään ikuisesti toimi, vaikka miten olis tehokasta joskus ollut. Se kuinka nopeasti kroppa alkaa kyllästymään, on sitten yksilötason juttu.

Miten ja millaista vaihtelua pitäs tehdä, liittyy sitten valmennuksenkin osaamiseen. Lukemattomia kertoja on pitkänkin linjan nostajan kehitys lähtenyt uuteen nousuun, kun sitä treenin sisältöä on muokattu palautuminen paremmin mielessä ja niitä vanhoja uskomuksia hieman karsittu.

Noin 80%:n kuormalla kaikki lihassolut on jo käytössä, joten sillä sarjan tiukkuudella ei rekrytoida enää enempää mitään. Se nostamisen teho priimatekniikalla tulis olla voimaharjoittelussa selkeesti päällimmäisenä. Sarjatiukkuudella pelataan sitten palautumisen kanssa siten, ettei treenien välit kasvaisi liian pitkiksi. Semmonen tuppaa heikentään tekniikkaakin jo.
 
Juu ja kyllä tässä vielä kehitytään. Mutta tosiaan joskus tuo alhaisen volyymin failure mättö oli se juttu. Nykyisin parempi jotain muuta / jättää se failure mättö kevyempiin liikkeisiin. Jalkaprässistä palautuu puolessa ajassa kyykkyyn verrattuna jos samanlaista sarjaa vetää. Voi olla sitä kautta esim etureisien lihaskasvulle parempi kuin kyykky kerran 2 viikkoon jne.

Mutta muutoksiahan sitä on haettava kun jokin ei enää toimi.
 
Ei se feilu silti mikään peikko ole ja käytän sitä itekin valmennuksessa. Enempi sen osa kuitenkin on ärsykevaihteluna ja testitreeninä. Yks mahishan vois olla, että vuorottelet niiden treenien sisältöä esim. viikottain tms. Sillon joka toinen vois olla pienemmällä volyymilla, mutta tiukempaa ja joka toinen sitten määrällisempää ja sarjatiukkuus iisimpi. Esim tällai:
1. 4* RIR 0-1
2. 6*4* RIR 2-3
3. 2* RIR 0-1
4. 6*2* RIR 3-4
 
Itse keksin parikymppisenä
Täytyy myös muistaa perus pointti että nuorena kehittyy millä tahansa treeni tyylillä ja palautuminen on nopeampaa. Ei voi mitenkään odottaa että kehitys ja palautuminen pysyy yhtä hyvänä kun treeni vuosia on monta takana. Parikymppisenä tein itsekin joka treenissä enkkoja vaikka treenasin aina failureen tehokeinojen kera. Ei koskaan kevyitä treenejä. Varmaan pari kolme vuotta nousi tulokset kokoajan.
 
Failure treenaamiseen liittyen, onko muilla ollut havaintoja, että sarjapainojen kasvaessa treeniuran aikana palautumiskapasiteetti ei pysy enää mukana?

Itse keksin parikymppisenä 1 sarja failure treenaamisen perintesen korkeamman volyymin tilalle ja kehitys silloin räjähti seuraavan vuoden aikana.
Kyykky jostain 4x140kg -> 5x170kg vuodessa. Silloin olin naturaali ja usein sai tuon vuoden aikana jopa 2 kertaa viikkoon tehtyä failure kyykky sarjan rikkoen ennätystä. Edelleenkin alle 30v olen.

Sitten tuli lääkkeet avuksi ja tuo treeni systeemihän toimi edelleen. Kohta oltiin 5x200kg kyykkyssä. Tässä kohtaa olin huomannut, ettei pysty kuin max kerta viikkoon tuollaisen kyykyn tekemään. Eikä lääkkeistä huolimatta puhettakaan että 2x viikossa.

Sittemmin kun ollaan tuolta vielä kehitytty, niin ei edes korkeilla kaloreilla ja lääkkeillä pysty palautumaan tuommoisesta kuin kerran 10-14 päivään. Tuommoisen treenityylin yrittämisessä ei ole siis mielestäni järkeä enää ja jäänytkin pois. Muuten varmaan toimisi jos palautuisi järkevämmässä ajassa. Tehty muita treeni tyylejä välissä ja kokeiltu uudelleenkin mutta aina sama homma.


Jotenkin vain oudon tuntuista, että sillon natuna pystyi vetämään sunnuntaina ennätys sarjan 5x160kg, mikä oli sen aikainen totaali failure ja sitten torstaina parantamaan 6x160kg. Nyt lääkkeiden kanssa 10x200kg niin tietää kokemuksesta, että turha edes yrittää seuraavaan kahteen viikkoon parantaa ja muutenkin ennätyksen jälkeen fiksumpi lähteä hakemaan vauhtia vähän alempaa kuin että yrittäisi heti parantaa.
Irtiottokyvyn kehittyessä ei CNS:n palautumiskapasiteetti pysy perässä. Ja kyllä myös isommat kuormat on kaikinpuolin raskaampia kropalle. Nivelet, jänteet, lihakset. Core-lihaksisto myös kovemmalla kuormituksella ja kaikki pienet tukilihakset.
 
Irtiottokyvyn kehittyessä ei CNS:n palautumiskapasiteetti pysy perässä. Ja kyllä myös isommat kuormat on kaikinpuolin raskaampia kropalle. Nivelet, jänteet, lihakset. Core-lihaksisto myös kovemmalla kuormituksella ja kaikki pienet tukilihakset.
Joo, tässä on varmasti pohjimmiltaan kyseessä ihan samat perusperiaatteet kuin voimanostajan kisavalmisteluissa. Piikkaus kun eroaa suurestikin eri tasoisilla nostajilla. Absoluuttisesti heikompi nostaja palautuu maksimisuorituksesta nopeammin kuin vahvempi nostaja. 200 kg vetäjä voi ottaa maksimivedon jopa vielä pari päivää ennen kisoja, kun 400 kg vetäjä ottaa viimeisen kovan varmaan pari viikkoa ennen. Heikompi nostaja ei hyödy noin pitkästä kevennyksestä millään tavalla ja oikeastaan siinä taitaa käydä useimpien kohdalla ihan päinvastoin ja voimat vain häviää.

Siis kyllä. Absoluuttisesti isommista painoista palautuu absoluuttisesti hitaampaa, vaikka molemmat suoritukset on suhteellisesti yhtä kovia.
 
Mulla on kisanostajia ja ei-kisaajia aika laajalla spektrillä kilojen suhteen ja se maksimitaso ei juurikaan kerro, miten piikkaus hoidetaan tai kuinka paljon kevennystä tarvitaan.

Vedossa ei oo kyllä ketään mukana, kuka samalla viikolla vetäis maksimin, ku pitäs rajoja testailla kisassa. Eipä kyllä penkissä, kyykyissä tai leuoissakaan löydy semmosia. En muista kyllä ketään, kuka semmosta menis tekemään kisaviikolla tässä nyt viimeseen 30 vuoteen edes.

Painonnostossa aloitusrautoja jotku ottaa päivää paria ennen jopa, mutta aika monilla siinäkin lajissa kisaviikko on kevyempi.
 
Mulla on kisanostajia ja ei-kisaajia aika laajalla spektrillä kilojen suhteen ja se maksimitaso ei juurikaan kerro, miten piikkaus hoidetaan tai kuinka paljon kevennystä tarvitaan.

Vedossa ei oo kyllä ketään mukana, kuka samalla viikolla vetäis maksimin, ku pitäs rajoja testailla kisassa. Eipä kyllä penkissä, kyykyissä tai leuoissakaan löydy semmosia. En muista kyllä ketään, kuka semmosta menis tekemään kisaviikolla tässä nyt viimeseen 30 vuoteen edes.

Painonnostossa aloitusrautoja jotku ottaa päivää paria ennen jopa, mutta aika monilla siinäkin lajissa kisaviikko on kevyempi.
Eikös Hautala just vetänyt maksimit failureen asti vedossa vielä vajaa viikko ennen kisaa? Vai muistelenko ihan omiani?
 
Back
Ylös Bottom